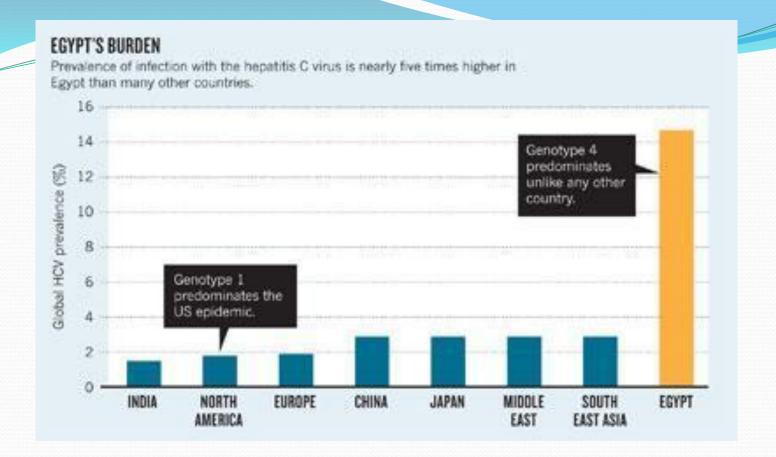
Disclosure Statement

Within the past two years:
I have not had an affiliation (financial or otherwise) with a commercial organization that may have a direct or indirect connection to the content of my presentation.
I have had an affiliation (financial or otherwise) with a commercial organization that may have a direct or indirect connection to the content of my presentation. Details below.
Does your presentation describe the off-label use of a device, product, or drug that is approved for another purpose?
No Yes If you answered YES , you must disclose this to the audience within your presentation

	Organization Name		
Type of Relationship	Modest (less than \$10K)	Significant (greater than \$10K)	
A. Consulting Fees/Honoraria			
B. Officer, Director, Or In Any Other Fiduciary Role			
C. Clinical Trials			
D. Ownership/Partnership/Principal			
E. Intellectual Property Rights			
F. Other Financial Benefit			

Anti-inflammatory treatment with cetirizine improves refractory heart failure in patients with hepatitis C virus-induced myocarditis


By

Mohamed Haykal; MD

Lecturer of cardiology

Academy of Scientific Researches and Technology - Egypt

Egypt has the highest prevalence of hepatitis C virus (HCV) in the world, apparently because disposable needles and syringes were not used for the intravenous treatment of schistosomiasis during the widespread national eradication campaigns until 1980.

(Deuffic et al; 2006)

Predominant HCV genotypes in different parts of the world (Tibbs&Smith; 2001).

Hepatitis C infection

Hepatic Manifestations Extra-hepatic manifestations (syndrome)

HCV: Extrahepatic Manifestations

Autoimmune Phenomena

CRST Syndrome²

Dermatologic

Cutaneous Necrotizing Vasculitis²

- Lichen Planus¹
- Porphyria Cutanea Tarda¹

Hematologic

- Aplastic Anemia¹
- Mixed Cryoglobulinemia¹
- Non Hodgkin's B-Cell Lymphoma¹
- Thrombocytopenia¹

Endocrine

- Diabetes Mellitus²
- Hypothyroidism²

- Arthritis/Arthralgia³
- Myalgia/Weakness³
- Peripheral Neuropathy³

Neuropsychiatric

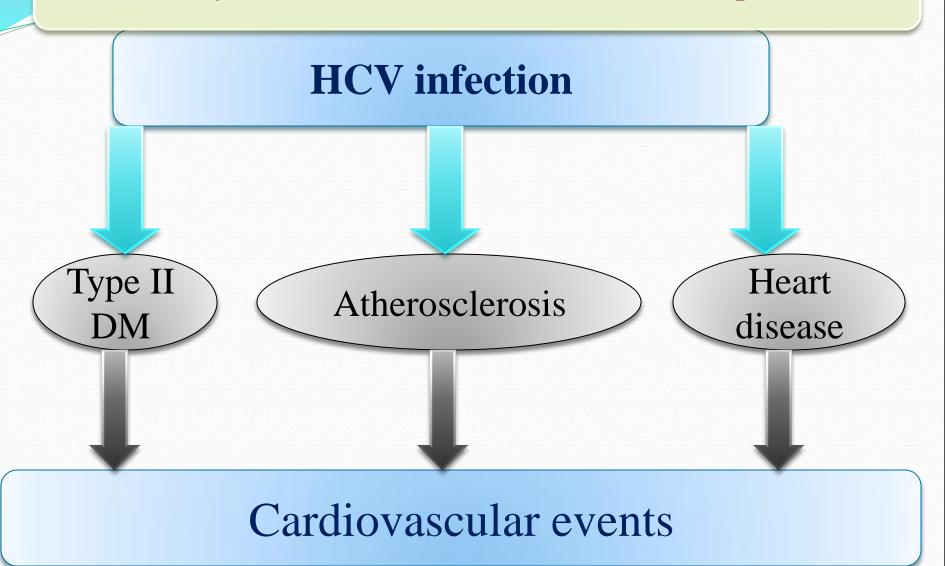
Depression⁴

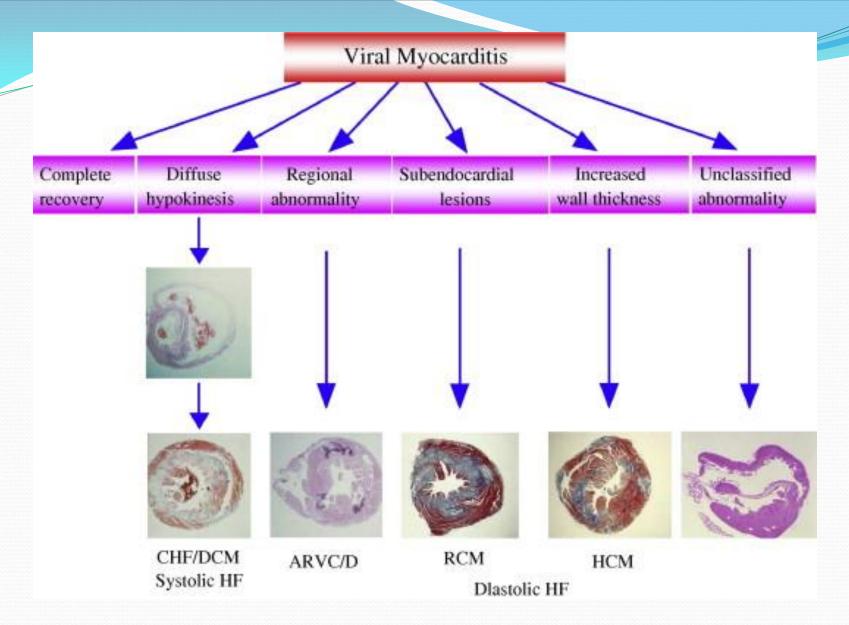
Ocular

- Corneal Ulcer²
- Uveitis²

Renal

- Glomerulonephritis¹
- Nephrotic Syndrome²

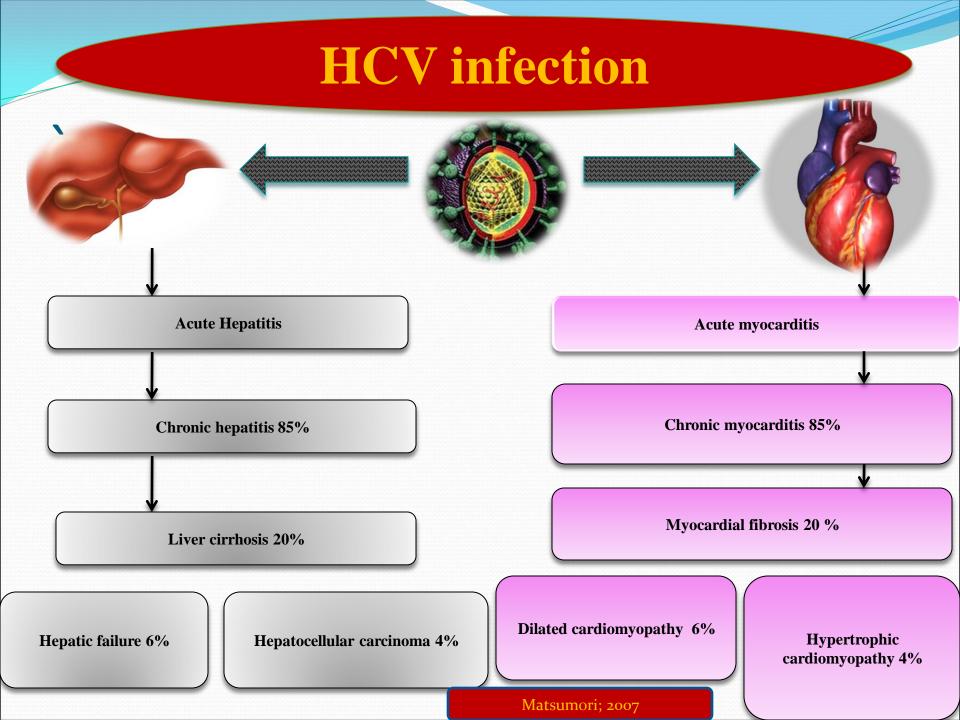

Vascular


- Necrotizing Vasculitis³
- Polyarteritis Nodosa³

CRST = Calcinosis, Raynaud's phenomenon, Sclerodactyly and Telangiectasis

- 1. Angello V, et al Journal of Hepatology, 2004;40:341-352
- Galossi A, et al. J Gastrointestin Liver Dis. 2007; 16:65-73.
- NIH. NIH Consens State Sci Statements 2002; 19(3):1-46
- Scene D. et al. Metab Brain Dis. 2004;19: 357-381

Pathways of cardiovascular affection in HCV patients


(Matsumori; 2009)

Hepatitis C virus (HCV) causes cardiomyopathy as a complication of HCV myocarditis.

This may be due to:-

- 1- An inflammatory response, which induces growth or death of cardiac cells.
- 2- HCV may directly induce cardiomyopathy, via viral products that lead to cardiomyopathy through damage of the cardiac cells.

(Matsumori; 2010)

In 2007

About 600 patients were screened for HCV Abs in the out patient clinic of Cardiovascular and Ultrasonography Research Unit (CURU)

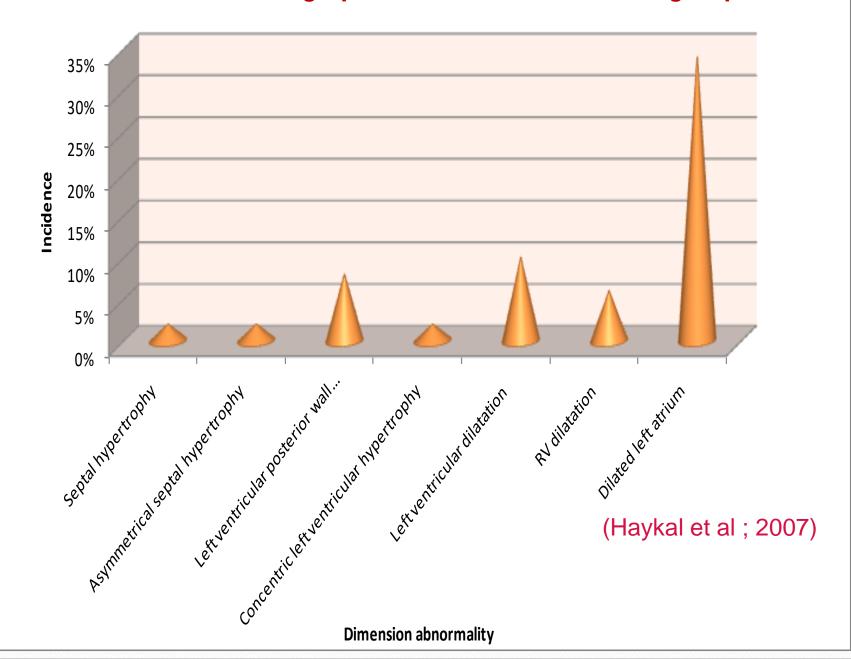
24 % (144 patients) are HCV Abs +ve

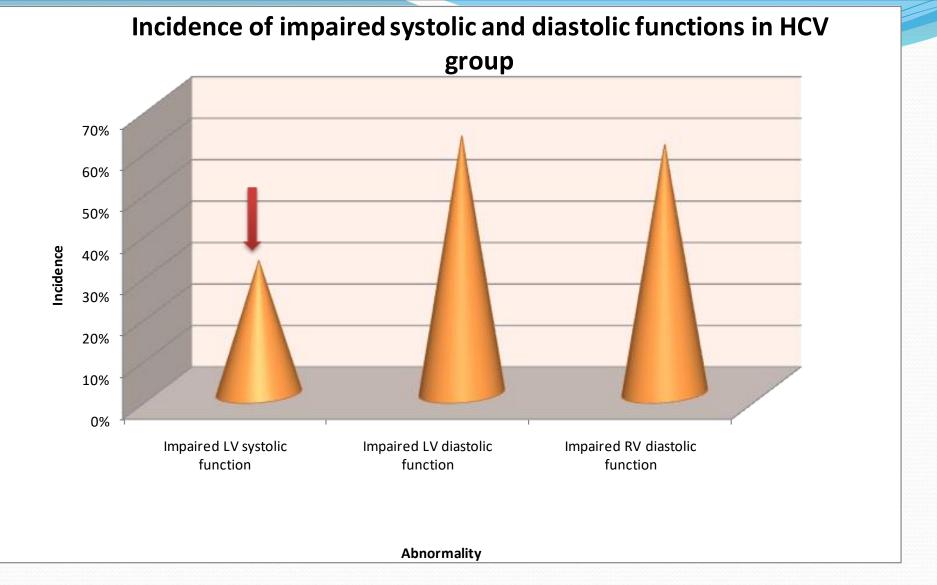
In 2007

Haykal et al; have studied CV effects of HCV in 50 HCV patients compared to 50 healthy controls

Echocardiography results

ı	Echocardiographic measurement	Control group (n=50)	HCV group (n=50)	P value	Significance
1.	IVSDd	0.84(±0.11)	0.905(±0.2)	<0.001	VHS
2.	LVPWDd	0.855(±0.13)	1.0(±0.2)	<0.01	HS
3.	LVEDd	4.94(±0.43)	4.78(±0.86)	>0.05	NS
4.	RVEDd	1.61(±0.47)	2.0(±0.4)	<0.01	HS
5.	LA	3.645(±0.45)	3.925(±0.6)	> 0.05	NS


Cardiac dimensions in HCV group compared to control group (Haykal et al; 2007)


Echocardiography results

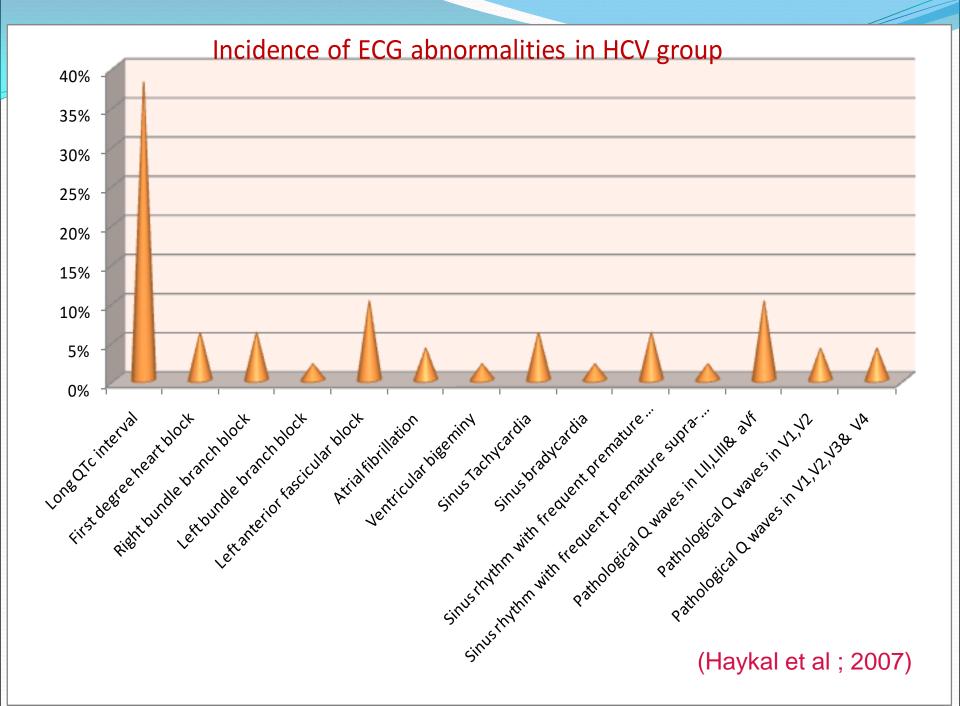
	Echocardiographic feature	Control group (n=50)	Patients with HCV (n=50)	P value	Significance
1	FS	35.23(±4.45)	33(±8.47)	< 0.05	S
2	EF	65(±6.02)	62.425(±12.9)	<0.001	VHS
3	E/A ratio of mitral inflow.	1.38(±0.31)	0.855(±0.43)	<0.001	VHS
4	E/A ratio of tricuspid inflow.	1.45(±0.32)	0.835(±0.48)	<0.001	VHS

Systolic and diastolic functions in HCV group compared to control group (Haykal et al; 2007)

Incidence of echocardiographic abnormalities in HCV group

(Haykal et al; 2007)

ECGresults


	Electrocardiogra-phic feature	Control group (n=50)	HCV group (n=50)	P value	Significance
1.	QTc interval	350(±27.5)	360(±34.92)	<0.05	S
2.	P-R interval	160(±19.22)	160(±33.03)	>0.05	NS

Comparison of P-R and QTc intervals between HCV group and control group.

(Haykal et al; 2007)

	Electrocardiographic abnormality	Incidence
1.	Long QTc interval	38%
2.	First degree heart block	6%
3.	Right bundle branch block	6%
4.	Left bundle branch block	2%
5.	Left anterior fascicular block	10%
6.	Atrial fibrillation	4%
7.	Ventricular bigeminy	2%
8.	Sinus Tachycardia	6%
9.	Sinus bradycardia	2%
10.	Sinus rhythm with frequent premature ventricular complexes	6%
11.	Sinus rhythm with frequent premature supra-ventricular complexes	2%
12.	Pathological Q waves in LII,LIII& aVf	10%
13.	Pathological Q waves in V1,V2	4%
14.	Pathological Q waves in V1,V2,V3& V4	4%

Incidence of electrocardiographic abnormalities in HCV group.

Heart failure is an inflammatory process

Mast cells also are found in the human heart and have been implicated in cardiovascular diseases. Mast cells increase in number in the failing heart, including dilated or ischemic cardiomyopathy and acute myocardial infarction.

(Matsumori; 2010)

Cetirizine

(a second generation anti-histaminic)

An agent that stabilizes mast cells and an H-1 receptor antagonist has been shown to improve heart failure caused by pressure overload and viral myocarditis in an animal model.

(Matsumori; 2010)

Patients and methods

Inclusion criteria: HCV patients with systolic dysfunction and heart failure not associated with other causative or contributing factor of HF including valvular, CAD, DM, HTN......etc. (only 9 patients)

Exclusion criteria:- any HCV patient associated with other possible cause of HF.

All patients were subjected to clinical evaluation, ECG, NTpro BNP and echocardiographic assessment including speckle tracking initially and during follow up visits.

Patients and methods

Standard anti-failure therapy including B- blocker, ACEIs, Diuretics ± digixin were prescribed to the 9 patients >>>> Still NYHA III/IV after 1 month of ttt.

Cetirizine therapy was added to the standard anti-failure therapy in dose 10 mg once daily at bed time for three months

After three months of Cetirizine therapy

The 9 patients improved on both clinical, ECG, Echo and NT-Pro BNP basis.

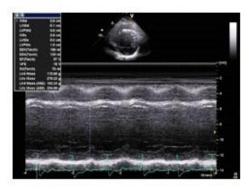
Clinically >> all patients improved form NYHA III/IV to NYHA I

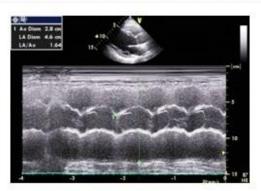
1- ECG QTc interval

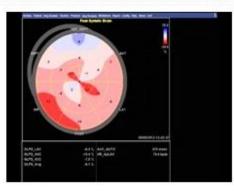
Before Cetirizine (n =9)	After Cetirizine (n=9)	P value
465.56 ± 49.27	435.56 ± 41.57	0.005

2- Conventional echocardiography

Parameter	Before Cetirizine (n =9)	After Cetirizine (n =9)	P Value
Left atrial diameters (mm)	48.78 ± 5.26	$\textbf{46.11} \pm \textbf{4.34}$	0.001
LV end diastolic diameter (mm)	61.33 ± 15.58	59 ± 15.01	0.019
LV end systolic diameter (mm)	47.44 ± 16.95	42.89 ± 13.94	0.005
EF %	$\textbf{46.89} \pm \textbf{16.59}$	54 ± 10.62	0.013

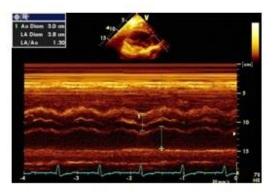

3- speckle tracking

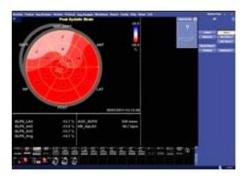

Average LV Strain %Global (GS)	Before Cetirizine (n =9)	After Cetirizine (n =9)	P value
	-11.9 ± 6.24	- 13.29 ± 6.07	0.009


4- NT proBNP

NT Pro BNP	Before Cetirizine (n =9)	After Cetirizine (n =9)	P wave
pg/dL	1217.33 ± 1189.19	591.56 ± 644.88	0.021

HCV patient with systolic dysfunction before cetirizine therapy (EF 37%, LA 46 mm& GS – 8.1 %)





The same HCV patient after 3 months of cetirizine therapy (EF 50 %, LA 38 mm & GS – 14.1 %)

Conclusion

1- Our study is the first to investigate the role of an antihistamine, cetirizine, in the treatment of HCV cardiomyopathy in human. Our results confirm those from an experimental study of viral myocarditis in mice, which showed the role of inflammatory cytokines and metalloproteinases in cardiac remodeling

Conclusion

2- Cetirizine represents a new adjuvant drug that is effective for the treatment of refractory heart failure in HCV cardiomyopathy

Conclusion

3- Cetirizine might be considered as a bridge therapy for HCV-induced myocarditis and heart failure until the HCV patient becomes eligible for interferon-ribavirin eradication therapy aimed at complete hepatic and extrahepatic viral clearance.

